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Equivalence of two approaches for the inhomogeneous density in the canonical ensemble

J. A. White and S. Velasco
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In this Brief Report we show that the inhomogeneous density obtained from a density-functional theory of
classical fluids in the canonical ensemb®E), recently presented by Whit al. [Phys. Rev. Lett84, 1220
(2000], is equivalent to first order to the result of the series expansion of the CE inhomogeneous density
introduced by GonZaz et al. [Phys. Rev. Lett79, 2466(1997)].

PACS numbegps): 61.20.Gy, 68.45-v

A statistical mechanics ensemble is a collection of identi- The first approach is based on the following series expan-
cal systems under the same external conditions. Although th&ion of the CE density profilec(r) in terms of its corre-
choice of a particular ensemble for studying a concrete syssponding GCE density profilegc(r):
tem should be guided by the conditions in which the system L 2 L
is found, one can choose—due to mathematical or computa- _ 2
tional convenience—any ensemble for analyzing the equilib- pc(N=pedr) =3 A (N)(;<N>2 Ped(n)+0 W)
rium properties of the system. This way of proceeding, based (1)
on the equivalence of the ensembles in the thermodynamic _ o ) )
limit, is only justified for systems with a very large number where.the grand canonical profile is obtained for a.chemlcal
of particles. For small systems, however, the ensembles aRPtentialu that leads to an average number of partickis
no longer equivalent and the external conditions must dete/€4Ua 2toN—the2f|xed integer number of particles in the CE,
mine the choice of ensemble. and A?(N)=(N?)—(N)? is the mean square fluctuation of

In this context, the use of density-functional the¢BFT) the number of part_icles in the GCE. Higher—ordgr terms in
for the study of classical inhomogeneous fluids has usuallt € a_bove expansion also_ dep_end on fluctuations and on
been limited to the grand canonical ensemi@€E), where ariations of the GCE. profile \.N'th FepeC‘ o) .[7’8]' In
e temperaur and the chemica potental ae xed by D11, 18 0 canonicl proflece s e souten of e
an external reservoir. A large variety of inhomogeneous situ;u and external potegtiaygt(r)q P
ations has been successfully studied by means of DFT in the xR
GCE[1-3]. These situations include fluids confined in nar- 8Fsdpl
row pores or capillarief4], or even spherical cavitid§—7], “op(n) Ve =n, 2
which are implicitly assumed to be open, i.e., allowing ex- p=p

change of particles with a reservoir. This assumption is CIUz here Faod p] is the GCE free-energy functional. For a

cial for _situations With_ a small number_of particles_ Where,Chemical potential leading to a giveiN), Eq. (2) can be
depending on the choice of ensemble, important d'fferenceﬁawritten ag7]

may arise in the equilibrium microscopic structure of the

system[7,8]. If one wishes to investigate the properties of a W

smallclosedsystem at temperatu® the study must be per-  Poc(") =(N)exH — BVe,(r) + ¢ (ri[pacl)] f dr
formed in such a way that one obtains results in the canoni-

cal ensemble(CE) because the number of particl® is Xexf — BVex(r)+cM(r;[pec) ], ©)
fixed. In DFT this goal can be achieved by means of two . . .
different approachgs. On the one hand, thye DFT could b&vhere,8=1(kBT is the Inverse te_mperature aot) is the
formulated in the canonical ensemii], with a minimum one-body direct correlation function

free-energy principle with fixed andN, and an appropriate 8 Fod pl— Fecol p])
CE functional. Very recently, this approach has been explic- cO(r:[p)=-8 5 4
itly realized[10] by considering an approximate expression p(r)

for the CE functional. On the other hand, one can perform ar_ . = heing the usual ideal-gas free energy. This correlation
conventional DFT study in the GCE and then relate the oby nction is the first member of the direct correlation hierar-

tained properties to those of the CE. This approach was fo'c‘:hy
lowed in Refs[7,8] where the CE density profile of a hard-

sphere fluid in a small spherical cavity was calculated by - S"(Fod pl—Feciolp])
means of a series expansion in terms of the corresponding € (r1, ... .failp)=-8 Bp(ry) - 3p(ry)
GCE profile. The aim of the present paper is to show that ! " (5)

these two approaches yield equivalent results to order 1/
For clarity we start with a brief summary of the main resultsFrom Eq.(3), in DFT it is possible to obtain density profiles
of the two approaches. normalized for a giveqN). This allows for obtaining ap-
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proximate CE profiles using Eq1l) where the derivatives 5
with respect to(N) are calculated numericallfWe note A (N):f fdrldfzg(fl.fz)- (13)
that, using the thermodynamic identity A2(N)

=d(N)/d(Bu), the mean square fluctuation can also be exin addition, taking into account that is the functional in-

pressed as a derivative with respec{to).] This procedure  yerse of the second derivative of the GCE free-energy
was used ir{7,8] to obtain the CE density profile of a hard-

sphere fluid confined in a hard spherical cavity. S(p—Vex(ry))
The second approach consists of an approximate expres- Qil(fl,rz)ZﬁT

sion for the free-energy functional in the CE. On the basis of Pil2

the standard saddle-point relation between the CE Helmholtz 8 Fod pl

free energy and the GCE grand potentikl], the following :ﬂm

approximation for the CE free-energy functiotfal was pro-

posed in Ref[10]: 1

=——8(r1—r1)—c(ry,ry), (14
p(ry)

1
Fdpl=BFsd pl+ =In27wA%(N;[p]), (6)
BFcpl~BFcdr] 2 Lp] and satisfies the Ornstein-Zernike relat{@12]

where the functional dependence of the GCE mean square
fluctuationA?(N) is made explicit. Since we are now work- f dr,G H(ry,r)G(ry,r3)=8(r —rj3), (15
ing in the canonical ensemble, the equilibrium density profile

pc(r) is obtained by minimizing the functionalFd[p] .
+ [drp(r)Veu(r) subject to the constraint one obtaing 10]

f drpc(r)=N. (7) A2(N:[p])=fdrF(r), (16)
Using the Lagrange multiplier technique one obtdibg] o .,
——A“(N;
ordel |, (=A ® o0 o
TS extl)=A, -1
9P(1) | pepe :f fdrldrz—ggﬁp((rr')rl)F(rl)l“(rz) (17)
2

where the Lagrange multiplier must be calculated from the

. ) . . _ F 2
constraint(7). This equation can be re-expressed as :(% +f f dradr, et ry )T ()T (E),
po1) =N exi{ ~ BVed1) +cM(ri[pcl) g 18
+§(r;[pc])]/ J dr exp — BVex(r) where
+C(1)(r;[pc])+§(r;[pc])], 9) F(r)EJ dr,G(r,ry), (19)
where
is obtained from the following averaged Ornstein-Zernike
Hrip])=—B o(Fdpl—Fedrl) (10 relation
iLel)= 5p(1) ;
which, for the saddle-poir(SP approximation(6), becomes F(r)=p(r)+p(r)f dryT'(ry)e®(r,ry). (20
1 1 SA%(N; ivi - i -
£ L] ~Ea(r[p]) = — (N;[p]) In deriving Eq.(17) we have considered the functional de

2 AX(N:[p]) Op(r) rivative with respect to the density of the Ornstein-Zernike
(11  relation(15) and exploited the fact thak andG ! are func-
tional inverses. We note that the key difference between the
In order to calculaté&sd(r;[ p]) it is important to express the GCE result(3) and the CE densit9) is the termé&(r;[ pcl).
mean square fluctuation?(N;[p]) as a functional of the We also note that, in this approach, using Ej.one directly
density. This can be done conveniently in the GCE by meansebtains the CE profile while, in the previous approach, the

of the density-density correlation functi$g,12] result (3) of GCE-DFT had to be inserted into E@l) in
order to obtain an approximation for the CE equilibrium den-
op(ry) sity. In what follows we shall show that both approaches

(12) agree to first order, though they yield different results due to

higher-order contributions in the saddle-point approach. We
since this function normalizes to the mean square fluctuatiorfirst derive some useful relations and then we show the
ie., equivalence to first order of the approaches.

_p-1
A= Vo2
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Our starting point is the well-known result of GCE BAV (1) =E&(r;[pcl) — E(po)- (27)
density-functional theory that, for given intermolecular po-
tential, chemical potentialk, and temperaturd, only one  Using the saddle-point approximatigge[Eq. (11)], this ex-
external potential can determine a specified equilibrium denpression could be employed in E&1) to obtain an approxi-
sity profile[1,2]. Thus there must exist an external potentialmation for the differencé p. Conversely, since Eql) gives
Vex(r) so that its corresponding GCE equilibrium density an approximation fodp, an expansion inverse to E(R1)
PGC(r;[vext]) (here the functional dependence p§c is would providgaway to obt_aiﬁ: This inversg expression_can
made explicit is equal to the CE resuic. Performing a be easily derived by subsptutmg the fupctlonql expansion of
functional expansion opg(r;[Vex]) aboutVe, and using 0Fcd p1/5p(r) aboutpac in Bq. (24). Using definition(14),

definition (12) we obtain we obtain
— -1
ﬂ‘lApm:fdug(r,rl)Avex[(rl) ﬂAVeW)‘Jd”g (r.ra)dp(ry)
1 8G ~H(r,ry)
1 51,10 s o [ anar, 52 ap i)
var ) o S Vo2 2! Spec(ra)
+ ... 2
XAVer(r1)AVe(fa)+ ..., (21) : (28)
where where we have exploited the fact th&;c(r_) is the solution
of the usual GCE Euler-Lagrange equati@n.
_ NV . _ _ Expansions(21) and (28) are asymptotically exact rela-
Ap(r)= r;[V [ Vextl) = pc(r r ) o .
P(N=pocl il Vexd) = Poc(li[Ver)) =pe(r) ~ pacl )22 tions linking Ap and AV,,. However, these expansions
(22) need to be truncated in order to become suitable for practical
and applications. In particular, to first order, E@1) becomes
AVl 1) =Vexl(1) = Vex(T). (23)

B0~ [ dnG AV, (29)
Therefore, Eq{(21) provides a link betweehp and AV
via a functional expansion where the coefficients belong tand Eq.(28) reduces to
the standard distribution function hierarchy.
At this point we would like to emphasize the role played

by Ve in the present workV,,, is the external potential that,
at chemical potentiak, yields the canonical profilec in a
GCE approachand this implies thap is the solution of the ~Approximations(29) and (30) are, by virtue of Eq.(15),
following GCE Euler-Lagrange equation equivalent equations; this fact shows the consistency of the
truncation of the expansions. Either Eg9) or Eq. (30) will

BAVen)~ [ dg Hrrdp(ry). (30

0Fcdpl — provide a simpléfirst ordep relation between the differences
“op(r) | +Vexd 1) = p. (24 Ap andAV,,. Using these equations, we shall show that the
pP=rc approximation(1) for Ap is equivalent to first order to the

. . . saddle-point approximatiogsp [Eq. (11)]. By considering
This fact makes meaningful the use of functionalspef e gerjvative of the GCE Euler-Lagrange equatignwith
like GH(r1.rai[pcl) =B —Vex(r1)) dpc(ra), its in- respect taN) at fixed Ve, one obtains the exact relation
verse, G(ry,ra;[pcl)=G(r1.r2;i[Ved pcll) =B 'opr)/

8(u—Vexl(r5)), or the mean square fluctuatisrf(N;[ pc]). . Ipec(ri)

On the other hand, sincec(r) is the equilibrium density j dryG =(r.ry) (N :AZ(N)' (32)
profile in the canonical ensemble, it is the solution of the CE

Euler-Lagrange equatiof8) where, in comparison with this \ here the chain rule for functional differentiation together
GCE equation, the free energy#s —the CE functional, the \ith definition (14) and the identitya(N)/d(Bu)=A2(N)

external potential i/, and the Lagrange multipliex is  paye heen used. This equation can be rewritten, via E&s.
used in the place of the chemical potenial From Eqgs.(8) and(19), as

and(24) and definition(10) we obtain

AVex(r)=\—p+ B [ pc))- (25 dpecn) _ (1) (32
aN)  AZ(N)
In the uniform limit, wherepg(r)— po=(N)/V=N/V and
also pc(r)—po, from Eqs.(2) and (24) one hasAV.,(r)  Differentiating this equation with respect {&) and using
=0 and thus Eq. (1), we obtain

M_R:ﬂ_lf(l)o)y (26) R ) 1 (9F(r) I'(r) (9A2(N)
MN~-—— — ,
and Eq.(25) can be rewritten as ol 21 Ny A2(N) N)

(33
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which inserted into Eq30) yields the following approxima- proximate equality also holds fofsd pc] as we show in

tion for AVey: what follows. Expandingsp aboutpgc we obtain
1 9A%N) 1 L aT(ry) _ . J 0&seri[pacl)
IO el S - 2V r; =£edr; + | dri——————"Ap+
BAVod)= 5o 2[ G G, EsArilpeD = srilpech + | dn =R
(34) (40
taking int t thdtis already aO(A tit
where we have used the identity and, taking into account thatis already &0(Ap) quantity,
s ri[pcl)=éseri[pac]) +O(Ap)?. (41
f dryG=H(r,r)l(ry)=1, (39  This proves the equivalence to first order of the two ap-

proaches for obtaining an approximate density profile in the

which follows from Egs.(31) and (32) [or, equivalently, Ccanonical ensemble.

from Egs.(15) and (19)]. Considering the derivative of Eq. [N summary, we have shown that two different ap-
(35) with respect to(N), and using the chain rule and Eq. proaches for obtaining the (_jensny pr(_)flle of a fluid in the
(32), Eq. (34) can be re-expressed as canonical ensemble are equivalent to first order. The demon-
stration was based on considering an external pote¥itial
1 dA%(N) for which the equilibrium density in the grand canonical en-
BAVe, (1)~ 28200 | AN semble is precisely the canonical ensemble result. Using this
external potential we have been able to work in the frame-
8G " r,ry) work of the grand canonical ensemble where approximations
+f dfldfzmr(rl)r(fz) similar to those carried out in this work are commonly en-
countered.
(36) The proof of the equivalence gives additional support to

the saddle-point approximation for the CE free-energy func-

tional introduced in[10]. This approximation allows for a
(37) CE-DFT treatment of fluids confined in a closed cavity with

excellent agreement with simulation data. However, the SP

1 (aAZ(N)_aAZ(N))
“2A%(N) L KN)  Spgclr))’

where in the last equality we have used Erj). Comparing free-energy functional was proposed on the basis of the well-

Eg. (37) with Eq. (27) we obtain known SP relation between the equilibrium CE free-energy
and the grand potential of a homogeneous fluid, assuming
1 SA%(N) that this relation would also be a good approximation for
Erilpcl)=— SAZN) Fpac) &sirilpecl) (38 inhomogeneous fluids. This assumption is thus reinforced by
(N) %e the results of the present paper, which are valid for any in-
and homogeneous situation. As a final remark, we would like to
stress the fact that our demonstration has focused on the
1 9A%(N) approximate CE density rather than on the free-energy func-
f(p0)~—2—a—N=§5F(p0), (39 tionals, and the equivalence between the two approaches
2A%(N) (N) must be understood in this sense.
where ésp was defined in Eq(1ll). Finally, we note that in We acknowledge financial support by the Conmsioter-
Eqg. (398 it is shown thaté[ pc] is approximately equal to ministerial de Ciencia y Tecnologiof Spain under Grant

ésd pecl, i.e., ésp evaluated apgc instead ofpc. This ap-  No. PB 98-0261.
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