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Equivalence of two approaches for the inhomogeneous density in the canonical ensemble

J. A. White and S. Velasco
Departamento de Fı´sica Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain

~Received 4 May 2000!

In this Brief Report we show that the inhomogeneous density obtained from a density-functional theory of
classical fluids in the canonical ensemble~CE!, recently presented by Whiteet al. @Phys. Rev. Lett.84, 1220
~2000!#, is equivalent to first order to the result of the series expansion of the CE inhomogeneous density
introduced by Gonza´lez et al. @Phys. Rev. Lett.79, 2466~1997!#.

PACS number~s!: 61.20.Gy, 68.45.2v
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A statistical mechanics ensemble is a collection of ide
cal systems under the same external conditions. Although
choice of a particular ensemble for studying a concrete s
tem should be guided by the conditions in which the syst
is found, one can choose—due to mathematical or comp
tional convenience—any ensemble for analyzing the equ
rium properties of the system. This way of proceeding, ba
on the equivalence of the ensembles in the thermodyna
limit, is only justified for systems with a very large numb
of particles. For small systems, however, the ensembles
no longer equivalent and the external conditions must de
mine the choice of ensemble.

In this context, the use of density-functional theory~DFT!
for the study of classical inhomogeneous fluids has usu
been limited to the grand canonical ensemble~GCE!, where
the temperatureT and the chemical potentialm are fixed by
an external reservoir. A large variety of inhomogeneous s
ations has been successfully studied by means of DFT in
GCE @1–3#. These situations include fluids confined in na
row pores or capillaries@4#, or even spherical cavities@5–7#,
which are implicitly assumed to be open, i.e., allowing e
change of particles with a reservoir. This assumption is c
cial for situations with a small number of particles whe
depending on the choice of ensemble, important differen
may arise in the equilibrium microscopic structure of t
system@7,8#. If one wishes to investigate the properties o
smallclosedsystem at temperatureT, the study must be per
formed in such a way that one obtains results in the can
cal ensemble~CE! because the number of particlesN is
fixed. In DFT this goal can be achieved by means of t
different approaches. On the one hand, the DFT could
formulated in the canonical ensemble@9#, with a minimum
free-energy principle with fixedT andN, and an appropriate
CE functional. Very recently, this approach has been exp
itly realized @10# by considering an approximate expressi
for the CE functional. On the other hand, one can perform
conventional DFT study in the GCE and then relate the
tained properties to those of the CE. This approach was
lowed in Refs.@7,8# where the CE density profile of a hard
sphere fluid in a small spherical cavity was calculated
means of a series expansion in terms of the correspon
GCE profile. The aim of the present paper is to show t
these two approaches yield equivalent results to order 1N.
For clarity we start with a brief summary of the main resu
of the two approaches.
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The first approach is based on the following series exp
sion of the CE density profilerC(r ) in terms of its corre-
sponding GCE density profilerGC(r ):

rC~r !5rGC~r !2
1

2
D2~N!

]2

]^N&2
rGC~r !1OS 1

^N&2D ,

~1!

where the grand canonical profile is obtained for a chem
potentialm that leads to an average number of particles^N&
equal toN—the fixed integer number of particles in the C
and D2(N)[^N2&2^N&2 is the mean square fluctuation o
the number of particles in the GCE. Higher-order terms
the above expansion also depend on fluctuations and
variations of the GCE profile with repect tôN& @7,8#. In
DFT, the grand canonical profilerGC is the solution of the
usual GCE Euler-Lagrange equation with chemical poten
m and external potentialVext(r ),

dFGC@r#

dr~r !
U

r5rGC

1Vext~r !5m, ~2!

where FGC@r# is the GCE free-energy functional. For
chemical potential leading to a given̂N&, Eq. ~2! can be
rewritten as@7#

rGC~r !5^N&exp@2bVext~r !1c(1)~r ;@rGC# !#Y E dr

3exp@2bVext~r !1c(1)~r ;@rGC# !#, ~3!

whereb51/kBT is the inverse temperature andc(1) is the
one-body direct correlation function

c(1)~r ;@r#!52b
d~FGC@r#2FGCID@r#!

dr~r !
, ~4!

FGCID being the usual ideal-gas free energy. This correlat
function is the first member of the direct correlation hiera
chy

c(n)~r1 , . . . ,rn ;@r#!52b
dn~FGC@r#2FGCID@r#!

dr~r1!•••dr~rn!
.

~5!

From Eq.~3!, in DFT it is possible to obtain density profile
normalized for a given̂ N&. This allows for obtaining ap-
4427 ©2000 The American Physical Society
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4428 PRE 62BRIEF REPORTS
proximate CE profiles using Eq.~1! where the derivatives
with respect to^N& are calculated numerically.@We note
that, using the thermodynamic identity D2(N)
5]^N&/](bm), the mean square fluctuation can also be
pressed as a derivative with respect to^N&.# This procedure
was used in@7,8# to obtain the CE density profile of a hard
sphere fluid confined in a hard spherical cavity.

The second approach consists of an approximate exp
sion for the free-energy functional in the CE. On the basis
the standard saddle-point relation between the CE Helmh
free energy and the GCE grand potential@11#, the following
approximation for the CE free-energy functionalFC was pro-
posed in Ref.@10#:

bFC@r#'bFGC@r#1
1

2
ln 2pD2~N;@r#!, ~6!

where the functional dependence of the GCE mean sq
fluctuationD2(N) is made explicit. Since we are now work
ing in the canonical ensemble, the equilibrium density pro
rC(r ) is obtained by minimizing the functionalFC@r#
1*drr(r )Vext(r ) subject to the constraint

E drrC~r !5N. ~7!

Using the Lagrange multiplier technique one obtains@10#

dFC@r#

dr~r !
U

r5rC

1Vext~r !5l, ~8!

where the Lagrange multiplierl must be calculated from th
constraint~7!. This equation can be re-expressed as

rc~r !5N exp@2bVext~r !1c(1)~r ;@rC# !

1j~r ;@rC# !#Y E dr exp@2bVext~r !

1c(1)~r ;@rC# !1j~r ;@rC# !#, ~9!

where

j~r ;@r#![2b
d~FC@r#2FGC@r#!

dr~r !
, ~10!

which, for the saddle-point~SP! approximation~6!, becomes

j~r ;@r#!'jSP~r ;@r#!52
1

2

1

D2~N;@r#!

dD2~N;@r#!

dr~r !
.

~11!

In order to calculatejSP(r ;@r#) it is important to express the
mean square fluctuationD2(N;@r#) as a functional of the
density. This can be done conveniently in the GCE by me
of the density-density correlation function@2,12#

G~r1 ,r2!5b21
dr~r1!

d„m2Vext~r2!…
, ~12!

since this function normalizes to the mean square fluctuat
i.e.,
-

s-
f

ltz

re

e

s

n,

D2~N!5E E dr1dr2G~r1 ,r2!. ~13!

In addition, taking into account thatG is the functional in-
verse of the second derivative of the GCE free-energy

G 21~r1 ,r2!5b
d~m2Vext~r1!!

dr~r2!

5b
d2FGC@r#

dr~r1!r~r2!

5
1

r~r1!
d~r12r2!2c(2)~r1 ,r2!, ~14!

and satisfies the Ornstein-Zernike relation@2,12#

E dr2G 21~r1 ,r2!G~r2 ,r3!5d~r12r3!, ~15!

one obtains@10#

D2~N;@r#!5E drG~r !, ~16!

d

dr~r !
D2~N;@r#!

5E E dr1dr2

dG 21~r ,r1!

dr~r2!
G~r1!G~r2! ~17!

5S G~r !

r~r ! D
2

1E E dr1dr2c(3)~r ,r1 ,r2!G~r1!G~r2!,

~18!

where

G~r ![E dr1G~r ,r1!, ~19!

is obtained from the following averaged Ornstein-Zerni
relation

G~r !5r~r !1r~r !E dr1G~r1!c(2)~r ,r1!. ~20!

In deriving Eq.~17! we have considered the functional d
rivative with respect to the density of the Ornstein-Zerni
relation~15! and exploited the fact thatG andG 21 are func-
tional inverses. We note that the key difference between
GCE result~3! and the CE density~9! is the termj(r ;@rC#).
We also note that, in this approach, using Eq.~9! one directly
obtains the CE profile while, in the previous approach,
result ~3! of GCE-DFT had to be inserted into Eq.~1! in
order to obtain an approximation for the CE equilibrium de
sity. In what follows we shall show that both approach
agree to first order, though they yield different results due
higher-order contributions in the saddle-point approach.
first derive some useful relations and then we show
equivalence to first order of the approaches.



E
o

en
ia
ity

t

ed
,

CE

n
of

-
s
tical

the

s
the

er

PRE 62 4429BRIEF REPORTS
Our starting point is the well-known result of GC
density-functional theory that, for given intermolecular p
tential, chemical potentialm, and temperatureT, only one
external potential can determine a specified equilibrium d
sity profile @1,2#. Thus there must exist an external potent
V̄ext(r ) so that its corresponding GCE equilibrium dens
rGC(r ;@V̄ext#) ~here the functional dependence ofrGC is
made explicit! is equal to the CE resultrC. Performing a
functional expansion ofrGC(r ;@V̄ext#) aboutVext and using
definition ~12! we obtain

b21Dr~r !5E dr1G~r ,r1!DVext~r1!

1
1

2! E dr1dr2

dG~r ,r1!

d„m2Vext~r2!…

3DVext~r1!DVext~r2!1 . . . , ~21!

where

Dr~r !5rGC~r ;@V̄ext# !2rGC~r ;@Vext# !5rC~r !2rGC~r !

~22!

and

DVext~r !5Vext~r !2V̄ext~r !. ~23!

Therefore, Eq.~21! provides a link betweenDr and DVext
via a functional expansion where the coefficients belong
the standard distribution function hierarchy.

At this point we would like to emphasize the role play
by V̄ext in the present work.V̄ext is the external potential that
at chemical potentialm, yields the canonical profilerC in a
GCE approachand this implies thatrC is the solution of the
following GCE Euler-Lagrange equation

dFGC@r#

dr~r !
U

r5rC

1V̄ext~r !5m. ~24!

This fact makes meaningful the use of functionals ofrC

like G 21(r1 ,r2 ;@rC#)5bd„m2V̄ext(r1)…/drC(r2), its in-
verse, G(r1 ,r2 ;@rC#)5G(r1 ,r2 ;@V̄ext@rC##)5b21drc(r1)/
d„m2V̄ext(r2)…, or the mean square fluctuationD2(N;@rC#).
On the other hand, sincerC(r ) is the equilibrium density
profile in the canonical ensemble, it is the solution of the
Euler-Lagrange equation~8! where, in comparison with this
GCE equation, the free energy isFc —the CE functional, the
external potential isVext, and the Lagrange multiplierl is
used in the place of the chemical potentialm. From Eqs.~8!
and ~24! and definition~10! we obtain

DVext~r !5l2m1b21j~r ;@rC# !. ~25!

In the uniform limit, whererGC(r )→r0[^N&/V5N/V and
also rC(r )→r0, from Eqs. ~2! and ~24! one hasDVext(r )
50 and thus

m2l5b21j~r0!, ~26!

and Eq.~25! can be rewritten as
-

-
l

o

bDVext~r !5j~r ;@rC# !2j~r0!. ~27!

Using the saddle-point approximationjSP @Eq. ~11!#, this ex-
pression could be employed in Eq.~21! to obtain an approxi-
mation for the differenceDr. Conversely, since Eq.~1! gives
an approximation forDr, an expansion inverse to Eq.~21!
would provide a way to obtainj. This inverse expression ca
be easily derived by substituting the functional expansion
dFGC@r#/dr(r ) aboutrGC in Eq. ~24!. Using definition~14!,
we obtain

bDVext~r !5E dr1G 21~r ,r1!Dr~r1!

1
1

2! E dr1dr2

dG 21~r ,r1!

drGC~r2!
Dr~r1!Dr~r2!

1 . . . , ~28!

where we have exploited the fact thatrGC(r ) is the solution
of the usual GCE Euler-Lagrange equation~2!.

Expansions~21! and ~28! are asymptotically exact rela
tions linking Dr and DVext. However, these expansion
need to be truncated in order to become suitable for prac
applications. In particular, to first order, Eq.~21! becomes

b21Dr~r !'E dr1G~r ,r1!DVext~r1!, ~29!

and Eq.~28! reduces to

bDVext~r !'E dr1G 21~r ,r1!Dr~r1!. ~30!

Approximations~29! and ~30! are, by virtue of Eq.~15!,
equivalent equations; this fact shows the consistency of
truncation of the expansions. Either Eq.~29! or Eq.~30! will
provide a simple~first order! relation between the difference
Dr andDVext. Using these equations, we shall show that
approximation~1! for Dr is equivalent to first order to the
saddle-point approximationjSP @Eq. ~11!#. By considering
the derivative of the GCE Euler-Lagrange equation~2! with
respect tô N& at fixedVext, one obtains the exact relation

E dr1G 21~r ,r1!
]rGC~r1!

]^N&
5

1

D2~N!
, ~31!

where the chain rule for functional differentiation togeth
with definition ~14! and the identity]^N&/](bm)5D2(N)
have been used. This equation can be rewritten, via Eqs.~15!
and ~19!, as

]rGC~r !

]^N&
5

G~r !

D2~N!
. ~32!

Differentiating this equation with respect to^N& and using
Eq. ~1!, we obtain

Dr~r !'2
1

2 S ]G~r !

]^N&
2

G~r !

D2~N!

]D2~N!

]^N& D , ~33!
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which inserted into Eq.~30! yields the following approxima-
tion for DVext:

bDVext~r !'
1

2D2~N!

]D2~N!

]^N&
2

1

2E dr1 G 21~r ,r1!
]G~r1!

]^N&
,

~34!

where we have used the identity

E dr1 G 21~r ,r1!G~r1!51, ~35!

which follows from Eqs.~31! and ~32! @or, equivalently,
from Eqs.~15! and ~19!#. Considering the derivative of Eq
~35! with respect tô N&, and using the chain rule and E
~32!, Eq. ~34! can be re-expressed as

bDVext~r !'
1

2D2~N!
S ]D2~N!

]^N&

1E dr1dr2

dG 21~r ,r1!

drGC~r2!
G~r1!G~r2! D

~36!

5
1

2D2~N!
S ]D2~N!

]^N&
2

dD2~N!

drGC~r ! D , ~37!

where in the last equality we have used Eq.~17!. Comparing
Eq. ~37! with Eq. ~27! we obtain

j~r ;@rC# !'2
1

2D2~N!

dD2~N!

drGC~r !
5jSP~r ;@rGC# ! ~38!

and

j~r0!'2
1

2D2~N!

]D2~N!

]^N&
5jSP~r0!, ~39!

wherejSP was defined in Eq.~11!. Finally, we note that in
Eq. ~38! it is shown thatj@rC# is approximately equal to
jSP@rGC#, i.e., jSP evaluated atrGC instead ofrC. This ap-
.
sti

ol.

.

proximate equality also holds forjSP@rC# as we show in
what follows. ExpandingjSP aboutrGC we obtain

jSP~r ;@rC# !5jSP~r ;@rGC# !1E dr1

djSP~r ;@rGC# !

drGC~r1!
Dr1•••

~40!

and, taking into account thatj is already aO(Dr) quantity,

jSP~r ;@rC# !'jSP~r ;@rGC# !1O~Dr!2. ~41!

This proves the equivalence to first order of the two a
proaches for obtaining an approximate density profile in
canonical ensemble.

In summary, we have shown that two different a
proaches for obtaining the density profile of a fluid in t
canonical ensemble are equivalent to first order. The dem
stration was based on considering an external potentialV̄ext
for which the equilibrium density in the grand canonical e
semble is precisely the canonical ensemble result. Using
external potential we have been able to work in the fram
work of the grand canonical ensemble where approximati
similar to those carried out in this work are commonly e
countered.

The proof of the equivalence gives additional support
the saddle-point approximation for the CE free-energy fu
tional introduced in@10#. This approximation allows for a
CE-DFT treatment of fluids confined in a closed cavity w
excellent agreement with simulation data. However, the
free-energy functional was proposed on the basis of the w
known SP relation between the equilibrium CE free-ene
and the grand potential of a homogeneous fluid, assum
that this relation would also be a good approximation
inhomogeneous fluids. This assumption is thus reinforced
the results of the present paper, which are valid for any
homogeneous situation. As a final remark, we would like
stress the fact that our demonstration has focused on
approximate CE density rather than on the free-energy fu
tionals, and the equivalence between the two approac
must be understood in this sense.
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